Phylogenetic analysis of diprotodontian marsupials based on complete mitochondrial genomes.
نویسندگان
چکیده
Australidelphia is the cohort, originally named by Szalay, of all Australian marsupials and the South American Dromiciops. A lot of mitochondria and nuclear genome studies support the hypothesis of a monophyly of Australidelphia, but some familial relationships in Australidelphia are still unclear. In particular, the familial relationships among the order Diprotodontia (koala, wombat, kangaroos and possums) are ambiguous. These Diprotodontian families are largely grouped into two suborders, Vombatiformes, which contains Phascolarctidae (koala) and Vombatidae (wombat), and Phalangerida, which contains Macropodidae, Potoroidae, Phalangeridae, Petauridae, Pseudocheiridae, Acrobatidae, Tarsipedidae and Burramyidae. Morphological evidence and some molecular analyses strongly support monophyly of the two families in Vombatiformes. The monophyly of Phalangerida as well as the phylogenetic relationships of families in Phalangerida remains uncertain, however, despite searches for morphological synapomorphy and mitochondrial DNA sequence analyses. Moreover, phylogenetic relationships among possum families (Phalangeridae, Petauridae, Pseudocheiridae, Acrobatidae, Tarsipedidae and Burramyidae) as well as a sister group of Macropodoidea (Macropodidae and Potoroidae) remain unclear. To evaluate familial relationships among Dromiciops and Australian marsupials as well as the familial relationships in Diprotodontia, we determined the complete mitochondrial sequence of six Diprotodontian species. We used Maximum Likelihood analyses with concatenated amino acid and codon sequences of 12 mitochondrial protein genomes. Our analysis of mitochondria amino acid sequence supports monophyly of Australian marsupials+Dromiciops and monophyly of Phalangerida. The close relatedness between Macropodidae and Phalangeridae is also weakly supported by our analysis.
منابع مشابه
Cytogenetics meets phylogenetics: a review of karyotype evolution in diprotodontian marsupials.
We have used a combined approach of phylogenetics and cytogenetics to describe karyotype evolution in Diprotodontia. Molecular relationships of diprotodontian marsupials have been clarified using a concatenation of 5 nuclear gene sequences from multiple exemplars of all extant genera. Our well-resolved phylogenetic tree has been used as a basis for understanding chromosome evolution both within...
متن کاملThe mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): implications for amniote phylogeny.
The complete mitochondrial genomes of two reptiles, the common iguana (Iguana iguana) and the caiman (Caiman crocodylus), were sequenced in order to investigate phylogenetic questions of tetrapod evolution. The addition of the two species allows analysis of reptilian relationships using data sets other than those including only fast-evolving species. The crocodilian mitochondrial genomes seem t...
متن کاملThe root of the mammalian tree inferred from whole mitochondrial genomes.
Morphological and molecular data are currently contradictory over the position of monotremes with respect to marsupial and placental mammals. As part of a re-evaluation of both forms of data we examine complete mitochondrial genomes in more detail. There is a particularly large discrepancy in the frequencies of thymine and cytosine (T-C) between mitochondrial genomes that appears to affect some...
متن کاملPhylogenetic tree construction based on amino acid composition and nucleotide content of complete vertebrate mitochondrial genomes
To evaluate the appropriateness of phylogenetic trees in biological evolution, we expanded a pre-existing baseline data set of randomly selected organisms by incorporating a collection of intentionally chosen organisms. Using two different clustering algorithms—Ward’s method and neighbor-joining—we constructed phylogenetic trees based on nucleotide sequences as well as amino acid composition an...
متن کاملPhylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia
Background: Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. Objectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & genetic systems
دوره 81 3 شماره
صفحات -
تاریخ انتشار 2006